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Summary. In this paper we introduce a new robust framework suitable for the
task of finding correspondences in computer vision. This task lies in the heart of
many problems like stereovision, 3D model reconstruction, image stitching, camera
autocalibration, recognition and image retrieval and a host of others. If the prob-
lem domain is general enough, the correspondence problem can seldom employ any
well-structured prior knowledge. This leads to tasks that have to find maximum car-
dinality solutions satisfying some weak optimality condition and a set of constraints.
To avoid artifacts, robustness is required to cope with decision under occlusion, un-
certainty or insufficiency of data and local violations of prior model. The proposed
framework is based on a robust modification of graph-theoretic notion known as
digraph kernel.
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1 Introduction

In computer vision there are many complex decision tasks where a suitable
prior model has only a weak form. These tasks mostly involve correspondence
recognition in general scenes. Given two or more images, the goal is to rec-
ognize which features in the target image(s) correspond to the features in
the reference image. We mention the two most important here: the Wide-
Baseline Stereo and the Semi-Dense Stereo since their character and their
solution covers most of the other cases as well.

In its simplest form the goal of Wide-Baseline Stereo is to recognize corre-
spondences between the set of interest points in the reference and the target
images. The images can be taken from very different viewpoints and possibly
over long time periods. The usual first step involves finding a set of interest
points in each image independently. These points are chosen to be well local-
ized and stable under allowed image transformations [M+05]. A local image
descriptor is then used to capture the content of the image neighborhood of
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each interest point [MS05]. The descriptor has to be invariant or at least in-
sensitive to image deformation due to re-projection. Locality of descriptors is
important for correspondence recognition in the presence of partial occlusion,
time-induced image degradation factors, illumination changes, etc.

Let A and B be the interest point sets including their description in the
reference and target image, respectively. The computational problem is to find
the largest partial one-to-one mapping M : A → B that has high probabil-
ity and such that the epipolar condition is satisfied. The cardinality of the
mapping is not known a priori. The condition has a parametric form

x>BFxA = 0, (1)

where xA (xB) is the image location of an interest point in A (B, respec-
tively) expressed in homogeneous representation (it is a 3-vector) and F is a
homogeneous 3× 3 fundamental matrix of rank 2. The constraint (1) predicts
that the corresponding point xB must lie on the line FxA in the target image.
The constraint has 7 independent parameters. See [HZ03] for more details on
geometric constraints related to projective cameras.

The standard, almost exclusively used solution to the wide baseline stereo
(WBS) problem is robust fitting of (1) by RANSAC [FB81, HZ03]. The WBS
problem has applications in camera autocalibration, image stitching, recogni-
tion and image retrieval, visual tasks for robotic manipulation and navigation,
range image registration, etc.

In Semi-Dense Stereo, the interest points are the set of all image points.
The goal is similar as above, with some simplifications that allow introducing
additional models. Based on the fundamental matrix F obtained from the
WBS correspondences it is possible to transform the image domain so that
the corresponding point in the target image is located on the same line as in
the reference image. After the transformation the parametric constraint (1)
is no longer required. The image transformation not only means it is not
necessary to search the whole image for a correspondence but also eases the
use of some useful constraints: It has been observed [YP84] that in a wide
class of scenes the left-to-right order in which interest points occur in the
reference image is preserved in their respective matching points in the other
image. This means that the mapping M has a monotonicity property which
is called the ordering constraint.

Many different algorithms have been proposed that attempt to solve the
semi-dense stereo problem, see [SS02] for a partial review. The semi-dense
stereo problem has most applications in 3D modeling from images, in view
synthesis, or in camera-based robotic obstacle avoidance.

Of course, the problem of occlusion remains in semi-dense stereo. Occlusion
means a surface point is visible in one image but it is occluded by another
surface in the other image. We say a world point w (a point on surface or in
midair) is ruled out by a binocularly visible point p if either w is occluded by
p in one of the cameras or if w is in front of p in one of the cameras. The
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Fig. 1. Occlusion: The surface point at the intersection of rays r1 and t1 (black) oc-
cludes a world point at the intersection (r1, t3) and implies the world point (r1, t2) is
transparent, hence (r1, t3) and (r1, t2) are ruled-out by (r1, t1) (a). In half-occlusion,
every world point such as X1 or X2 is ruled out by a binocularly visible surface point
(b, black dots). In mutual occlusion this is no longer the case (c, gray region).

situation is illustrated in Fig. 1. From algorithmic point of view, there are two
fundamental types of occlusion:

1. Half-occlusion: the set of surface points visible to both cameras rules-out
all other world points. This case is illustrated in Fig. 1(b).

2. Mutual occlusion: there are world points (in midair) that are not ruled-
out by surface points visible to both cameras. This case is illustrated in
Fig.1(c). Once the slit becomes wide enough for the background surface
to enter the zone, the zone shrinks or disappears (if ordering is to hold).

Occlusion, mutual occlusion in particular, means we do not know a priori
how large portion of the images can be interpreted as occluded or matched. It
is clear that the unknown or unconstrained cardinality of the solution poses
a serious problem in these tasks: The goal is not only to find a matching but
also determine which of the interest points are to be discarded. Of course one
should discard as little as possible but prior knowledge useful for such disposal
is hard if not impossible to obtain. With the exception of [GY05, Sar02], none
of the known algorithms models occlusion properly and exhibits the ability to
reject part of input data that is required here.

Repeated or constant appearance makes the problem worse: if the scene is a
collection of small particles floating in the air, no local decision can determine
which of the dots in the target image matches a particular dot in the reference
image. The decision problem is somewhat easier if more than three cameras
view the scene, especially if it is known that the scene consists of a surface
visible to all cameras (i.e. when there are no occlusions) [BSK01]. Similarly,
if a portion of the scene has constant appearance (consider a perfectly white
wall), unique solution does not exist regardless of the number of cameras
viewing it.

Hence, one needs a degree of certainty that the result of solving the prob-
lem is correct, especially in the case when data do not suffice for unique deci-
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Fig. 2. Local invalidity of prior model and illusions. Left-image disparity maps color-
coding depth are obtained from two different algorithms (a,b). Gray in (a) means
‘occluded,’ in (b) it means ‘occluded or unexplained,’ the two are not distinguished
to preserve clarity of the resulting picture. Both dynamic programming (DP) and
the proposed graph kernel (GK) algorithm process image rows independently.

sion and/or under the presence of occlusion: Part of data must be rejected and
the necessary component of the problem solution is therefore robustness. With
the notable exception of RANSAC solution to the WBS problem, standard
methods do not possess this property. Standard methods for finding dense
correspondence that are based on classical discrete energy minimization and
can be viewed as a consistent labeling problem [FS00], cannot cope with the
problem without introducing a special label ‘rejected,’ which necessarily de-
stroys any structural properties of the label set [FS00, KZ04]. As a result, the
matching (correspondence recognition) problem becomes NP complete.

Another consideration is validity of the prior model. If we use a model and
the model is in fact invalid for (a portion of) the scene, we can expect illusions
(artifacts). This is nicely illustrated by the example in Fig. 2: the model used
to obtain solution 2(a) assumes continuity of the scene and ordering (the
result is a MAP solution and the algorithm is dynamic programming run
independently on each image line [CH+92]). The scene is neither continuous

(a) ordering used (b) no ordering

Fig. 3. Density of G influences mismatch rate of the solution. The combination
of ordering and uniqueness constraints results in a graph in which each vertex has
O(|V (G)|) neighbors (a). Uniqueness constraint alone results in a graph with each
vertex having just O(

p
|V (G)|) neighbors. See Fig. 2 for input data. The color bar

shows depth coding (close distance is red, far distance is blue).
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nor the ordering constraint holds (and the slit section in between the two
foremost trees is a mutually occluded region). The artifacts appear as streaks
not primarily because the algorithm would run per image lines but because
the prior model is in contradiction with data which causes instability of the
solution. Note that the mutually occluded region in 2(a) is interpolated over
and that in the part where ordering does not hold (upper right corner of
the scene) the solution predicts illusory walls between the trees. A robust
behavior with respect to partial invalidity of the prior model is demonstrated
in Fig. 2(b): The algorithm also runs per image lines and assumes ordering (the
result is a stable solution and the algorithm is graph kernel which described
in [Sar02, KS03] and later in this paper). Note there are no streaks. In the
region where the prior model (ordering) contradicts data, the data is rejected
(the trees are ‘cut off’). We traded false positive illusions for ‘holes’ but the
fact is that holes are much easier to handle in subsequent interpretation than
false positives: an active vision system can be controlled to obtain more data
for the ambiguous region, for instance.

To summarize: we require robustness, i.e. the ability to cope with occlusion,
locally invalid prior models, unreliable data and repeated structures whose
corresponding images cannot be uniquely determined. The matching task then
consists of partitioning the interest points to (1) matched, (2) rejected and
(3) occluded in the image, so that (a) the probability of the matched subset
is as large as possible, (b) a set of constraints (parametric or other) hold on
the matched subset, (c) the rejected subset is as small as possible.

In this paper we will be interested in solving the problem based on the
principle of stability. The principle will lead to the problem of finding a kernel
of a directed graph whose structure represents the constraints and whose ori-
entation represents evidence (data, prior information, information from high
interpretation level, etc). Most importantly, the algorithm will be low-order
polynomial even for k-partite matching problems with k ≥ 2.

2 Stability and Digraph Kernels

Let A, B be two sets of participants of the matching game. Let V ⊆ A×B be
a set of putative matches. One can imagine A, B to be the sets of optical rays
(casted by the aforementioned interest points) in the reference and target
cameras, respectively, and A × B to be the set of all their mutual spatial
intersections. Our goal is to find the best partitioning of V to three subsets:
matched M , uninterpreted U and ruled-out R (occluded or transparent). We
will construct a simple graph G = (V,E) over the set V as follows. If there are
two vertices v1, v2 ∈ V that cannot be members of the solution simultaneously,
we add edge (v1, v2) to E. For instance, since the matching is to be one-to-one
(due to occlusion or transparency), each participant can be matched at most
once. Hence, the set of neighbors in G of a pair of participants p = (i, j), i ∈ A,
j ∈ B includes all pairs (i, k), k ∈ B, k 6= j and all pairs (l, j), l ∈ A, l 6= i.
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Fig. 4. Matching table representation of the graph.

If we arrange V as a matching table, we have to connect the element (i, j) to
all remaining elements on the i-th row and j-th column, see Fig. 4(a).

Other constraints can be included as well. If ordering is assumed, the
resulting matching M must be monotonic and the set of all neighbors for
p = (i, j) includes all pairs (k, l) such that k < i and l > j or k > i and
l < j. In the matching table representation the element (i, j) is connected to
all elements in two opposite quadrants, see Fig. 4(b).

Problems involving parametric constraints can be formalized as well. An
example is the WBS problem. Let the set of parametric constraints have m pa-
rameters and let a single pair (i, j), i ∈ A, j ∈ B remove d degrees of freedom
from the constraint set. E.g., the constraint (1) has m = 7 parameters and each
point correspondence removes d = 1 degree of freedom. In this case we proceed
as follows: the participants of the matching game are the sets A4, B4, i.e. all
interest point quadruples. A pair of octuples {i11, i12, i13, i14; j11, j12, j13, j14},
{i21, i22, i23, i24; j21, j22, j23, j24} ∈ A4 ×B4 are connected by edge in E if the
set of points xi1k

and xj2k
do not satisfy (1) for all k = 1, 2, 3, 4. The growth

of the dimension of the problem can be avoided by more rich local image
features: We need strictly more than m

d correspondences which requires par-
ticipant sets to be p-tuples Ap, Bp, where p is the smallest integer strictly
greater than m

2d . For instance, if ellipses are used then d = 2 [HZ03], and the
participant sets are just pairs from A2, B2. Edges due to uniqueness or order-
ing constraints are as easy to add to the graph over the vertex set Ap×Bp as
above. To summarize, the graph is G = (V,E) where V = Ap × Bp captures
the structure of all geometric and parametric constraints of the given problem.
It is important to observe that independent vertex sets of graph G represent
the set of feasible solutions. This is the set on which we will be selecting the
best solution, given data and prior knowledge.

Let V (G) denote the vertex set of graph G. Let now e(v) be a real interval
for every v ∈ V (G). We call it the evidence interval here. The interval captures
the posterior probability p(v ∈ M | z), i.e. the probability that v is a correct
match given measurement z and the prior knowledge. The width of the interval
represents our uncertainty on the true value of p(v ∈ M | z) due to data noise,
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Fig. 5. Strict and reversible arc of an oriented graph (G, ω).

known bias, approximation, and/or other reasons. The width of the interval
can be adjusted by a user-selected confidence parameter.

If the intervals are [0, 1] for all v ∈ V (G), data is totally uninformative and
we are expecting an empty solution. The narrower the intervals the greater
fraction of data is expected to be interpreted (unambiguously).

We say a vertex t ∈ V (G) is a competitor to vertex s ∈ V (G) if s and t
are connected by an edge in G and max e(t) > min e(s) (the e(t) is greater
than e(s) or the intervals overlap). We say an independent vertex set M of
V (G) is stable if every vertex q /∈ M has at least one of its competitors in
M , in other words, if there is a reason for such q to be ruled-out. We can
obtain a purely graph-theoretic representation of the matching problem as
follows: the underlying graph G is as before. We construct orientation ω of
the edges of G as follows: if {s, t} ∈ E(G) and max e(t) > min e(s) we orient
the arc from s to t. If {s, t} ∈ E(G) and the intervals e(t) and e(s) overlap we
orient the arc bidirectionally, see Fig. 5. We call the resulting directed graph
(digraph) an interval orientation of the underlying graph to distinguish it
from a general orientation of the graph. Interval orientations have a number
of important properties. Where confusion is not possible, we will use the brief
term ‘orientation’ for ‘oriented graph.’

To summarize, the pair (G, ω) is a digraph in which some arcs can have
both orientations. The stable set M of (G, ω) is then an independent vertex
subset such that each vertex q /∈ M has a successor in M . This structure is
known as a directed graph kernel [NM44, BG03].

The stable sets (kernels of (G, ω)) are our prospective solutions. They
are not yet robust, consider the example in Fig. 6(a) where most of the graph
orientation comes from uninformative data: There still is a kernel (two kernels,
in fact, one red and the other green).

We say an arc (s, t) ∈ ω is strict if (t, s) /∈ ω. Otherwise it is called
reversible. See Fig. 5. We say t is a successor of s if there is arc (s, t) and we
say t is a strict successor of s if there is arc (s, t) but not (t, s) in (G, ω). To
introduce robustness to stable sets, we define strict sub-kernel as follows:

Definition 1 (SSK). Let (G, ω) be an oriented graph. An independent vertex
subset S ⊆ V (G) is a strict sub-kernel if every successor of each v ∈ S has a
strict successor in S.

Fig. 6 shows several examples of maximal strict sub-kernels (SSK) in sev-
eral directed graphs (orientations): (a) and (d) have no SSK, (b) has one SSK
(red), (c) has two SSKs (red, green), and (e) has a SSK (red) despite the fact
it has no kernel.

Let us check if SSK has the desired behavior. If data is not informative, all
arcs are reversible and the solution is empty. This was expected. If data is in
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(a) 2/0 (b) 2/1 (c) 2/2 (d) 0/0 (e) 0/1

Fig. 6. Several orientations with their kernels and maximum strict sub-kernels
(SSK). Kernels in (a)–(d) are distinguished by color. Number a/b indicates the
orientation has a kernels and b maximal SSKs. The orientation in (e) has no kernel
but has a single maximal SSK (red). Only (a) is an interval orientation.

contradiction with the model (represented by the underlying graph G) then
even in the absence of evidential uncertainty, part (or all) of the graph gets
rejected, as the example in Fig. 6(e) shows. In the case of Fig. 6(e) we have
partitioned the vertex set to three subsets: matched (red), ruled out (light
gray) and uninterpreted (white).

The prefix sub- in ‘strict sub-kernel’ has been chosen to indicate incom-
pleteness: the SSK is no longer a maximal independent set. Using standard
terminology, a maximal SSK is not extendible to a larger SSK and a maxi-
mum SSK then has the largest cardinality of all maximal SSKs. Note than
incompleteness is necessary to obtain robustness. Maximality of SSK implies
minimality of the uninterpreted vertex subset.

3 Properties of Strict Sub-Kernels

An important question is existence and multiplicity of maximal strict sub-
kernels. We say a circuit (directed cycle) is even in an orientation (G, ω) if it
is of even length.

Theorem 1 (Uniqueness). Let (G, ω) be a general orientation. If every even
circuit in (G, ω) has at least one reversible arc then there is a unique maximal
strict sub-kernel (it can be empty).

The proof is not difficult but it is beyond the scope of this paper. The reader
is referred to a forthcoming paper.

We say a vertex p ∈ V (G) is a sink in (G, ω) if p has no successor in (G, ω).

Lemma 1. Let (G, ω) be an interval orientation. Then the following holds:

1. Every even circuit in (G, ω) has at least two reversible arcs, one at odd
and one at even position with respect to a starting vertex. Theorem 1 then
implies (G, ω) has a unique maximal SSK.

2. (G, ω) has a non-empty SSK if and only if there is a sink in (G, ω) (and
the sink is part of the SSK).
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3. Let K be any kernel of (G, ω). Then the SSK S is a subset of K.

Proofs are omitted for lack of space. The ‘only if’ part of Property 2 and
Property 3 do not hold in general orientations (consider examples in Fig.6(b)
and Fig.6(e), respectively). The last property is related to robustness and
therefore deserves some discussion.

Theorem 2 (Robustness). Let (G, ω) be an interval orientation. Let the
intervals e(v) generating ω be replaced by intervals e∗(v) ⊆ e(v) for every
v ∈ V (G). The intervals e∗(v) generate orientation (G, ω∗). Let S be the
maximum SSK of (G, ω) and S∗ the maximum SSK of (G, ω∗). Then S ⊆ S∗.

Proof. Whatever the new intervals e∗ are, the strict arcs in (G, ω) remain
preserved in (G, ω∗). The only effect of the replacement e 7→ e∗ is that some
of the reversible arcs break (they are replaced by strict arcs). It is not difficult
to see that S remains a SSK in a (general) orientation in which we break an
arbitrary set of reversible arcs. In case when S is not a maximal independent
vertex set, the new kernel S∗ may be larger because we removed some of the
uncertainty by breaking the arcs. If p ∈ S then p ∈ S∗, otherwise there would
be contradiction with the uniqueness of S∗ implied by the fact the (G, ω∗) is
also interval orientation and properties listed in Lemma 1 hold. ut

Robustness therefore means that the SSK for a given set of intervals e(v)
is an intersection of all solutions for any other choice of intervals e∗(v), as long
as e∗(v) ⊆ e(v). Wide e(v) is a safeguard against error or bias in the estimate
of p(v ∈ M | z) or represents our inability to provide its accurate value based
on data collected so far.

The last property to discuss in this paper is optimality. Let Q(p) be an
independent1 subset of the set of predecessors of vertex p ∈ V (G) and let Q(p)
be the set of all such subsets. We define the weight w(p) = max e(p) for each
p ∈ V (G). If M is a vertex subset, the weight of M is w(M) =

∑
p∈M w(p). We

then introduce the maximum possible sum of the upper limits of the intervals
e over all independent predecessors of p as

φ(p) = max
Q∈Q(p)

w(Q). (2)

Theorem 3 (Weak Optimality). Let (G, ω) be an interval super-orienta-
tion and let w : V (G) → IR be defined as above. Let K be a strict sub-kernel
which is a maximal independent vertex set of G. Let every p ∈ K satisfy

min e(p) > φ(p). (3)

Then K is the max-sum independent vertex subset in (G, ω), i.e. K =
arg maxM∈M w(M), where M is the set of all independent vertex sets of G.

1 An independent vertex subset in subgraph induced by the predecessors of p in G.
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Proof. To see there are interval super-orientations (G, ω) with a SSK satisfy-
ing (3), we run Alg. 1 (see the next section). At any stage of the algorithm
the sink at which reduction occurs clearly does not contradict (3).

Let M be a max-sum independent vertex set in (G, ω). We will prove
w(M) = w(K). Let s ∈ K be a sink in (G, ω). If s ∈ M then we just do the
reduction step of Alg. 1. If s /∈ M then there are some members from M in the
set of neighbors (predecessors) of s that are going to be removed in the next
reduction step. But, by (3), we know that w(s) >

∑
q∈P (s)∩M w(q) ≥ φ(p),

hence the sum of the weights of the removed elements of M does not exceed
the weight w(s). As Alg. 1 continues, the argument is repeated. ut

In other words, if K is a maximal strict sub-kernel of interval orienta-
tion (G, ω) and the evidence for each p ∈ K is greater than the evidence
for their potential competitors by a sufficient margin (3), then K is also a
max-sum independent vertex subset in (G, ω). The margin is greater when
discriminability of image features is greater.

Note that by (2), the margin (3) must usually be greater for a denser
graph G. The smallest margin occurs in one-to-one matching problems with
no additional constraints since each vertex has at most two independent pre-
decessors in this case. Not surprisingly, we have observed experimentally on
various problem domains that the quality (mismatch rate) of SSK is not very
good in this case, unlike in the case of a more dense graph, like that one re-
sulting from the inclusion of ordering constraint in stereoscopic matching, see
Fig. 3 for an illustrative example.

4 A Simple Algorithm for Interval Orientations

For the sake of completeness we describe the basic algorithm for interval
orientations. A faster algorithm for stereovision is described in [Sar02] and a
modification that produced the results in Figs. 2 and 3 is described in [KS03].
A solution to the range image registration problem is described in [SOS05].
The algorithm is not general: When used for non-interval orientations it finds
a strict sub-kernel that is not maximal. A complete overview of known SSK
algorithms is under preparation.

From Lemma 1 it follows that finding the maximum SSK in interval ori-
entation is as simple as just successive sink extraction and subsequent graph
reduction until there is no more sink (besides isolated vertices). By the same
lemma, the maximum SSK then consists of the isolated vertices in the reduced
graph. Formally,

Algorithm 1 (Sink Reduction)

Input: An interval orientation (G, ω). Output: Maximum strict sub-kernel S.

1. Initialize S := ∅.
2. If there is no sink in (G, ω), terminate and return S.
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3. Find a sink s ∈ V (G) and add s to S.
4. Remove s and all its predecessors P (s) from (G, ω).
5. Go to Step 2.

This basic version of the algorithm has worst-case complexity of O(α n),
where α is the independence number of G and n is the number of its vertices.
Finding a sink costs O(n) time, since in each vertex one just checks if the list
of outgoing arcs is empty. The removal of predecessors P (s) in Step 4 takes
O(n) time. The cycle 2–5 is repeated O(α) times, since we are constructing
an independent vertex set by Step 4.

Finding sinks in a digraph may be slow, especially if the graph is dense
and not explicit. The idea of a faster algorithm is based on finding any kernel
and then reducing it to a strict sub-kernel [Sar02]. This is possible in interval
orientations by Lemma 1.

5 Discussion

The framework described in this paper is still developing but it has already
been used successfully in semi-dense stereovision which enables us to recon-
struct large free-form objects (buildings, statues) from a set of unorganized
uncalibrated images from a hand-held camera [C+04]. I also has been ap-
plied to the problem of range image registration where globally convergent
algorithms are difficult to design [SOS05].

To be successful, the proposed framework needs good image features. The
crucial property of a feature is its discriminability. Low discriminability may
result in empty solution. Another important property is insensitivity to image
perturbations (random or not) that influence the interval widths discussed
above. Low insensitivity implies sparse or empty solutions, too.

Generalizations are possible. One of the most important ones is a pos-
sibility to work with a combination of several orientations: This provides a
seamless way of data fusion. Some properties are lost in a union of several
orientations: For instance, the union of two interval orientations is not inter-
val but it seems that it still has properties that allow a polynomial algorithm.
This is the subject of current work.

Another interesting generalization is a soft version of strict sub-kernel: The
arcs of (G, ω) carry a scalar number that represents our confidence that the
two endpoints are indeed competing hypotheses. The SSK definition is then
modified by redefining the notion of a strict successor. This is important in
matching problems with parametric constraints where it is usually not possible
to decide with absolute certainty whether the constraint holds or not.

Note that the k-partite matching problem remains polynomial in interval
orientations for any k > 2. This opens an entirely new set of possibilities in
correspondence finding. We believe the growth of computational complexity
can be reduced by suitable proximity representations allowing fast computa-
tion of the evidence e(v).
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